Stephen Corya
ECE 368
Project 1 Report
10/7/14

For this project, I wrote an algorithm to load a specific file, save a similar file, run a Shell Sort
on an array, run an improved version of bubble sort on an array, generate a Pratt sequence, generate a
second sequence, save a Pratt sequence to a file, and save the second sequence to a file. The functions
are contained in the file “sorting.c”, and their headers are contained in “sorting.h.”

My algorithm to generate the first sequence is of space complexity O(n log(n)), where the
maximum value in the sequence must be less than n'. This same algorithm is of time complexity
O(log(n)), where 'n' corresponds to the same value. The logarithmic time complexity is based on the
fact that the algorithm approaches the max value at a greater and greater rate as the algorithm
progresses. I may have been able to reduce the space complexity to O(log(n)) by not initializing the
sequence within an array of 'n' elements, rather calculating a value to use a the size based on a value
less than 'n' using logarithms. I was unsure if this would compile properly on the Shay machine, so I
elected to leave the space complexity at O(n log(n)). The time complexity is O(log(n)). My algorithm
to generate the second sequence is also of O(n log(n)) space complexity and O(log(n)) time complexity.
Again, the space complexity could likely be further optimized.

The functions containing both these algorithms produce output arrays of size O(log(n)), but still
require O(n log(n)) space to run. These output arrays represent the gap sequences used by the sorting
algorithms. Producing outputs like this allows the sorting routines to both use O(log(n)) additional
space complexity, as each sorting routine uses a sequence of the same magnitude relative to its input
size. Each sorting routine uses O(1) additional space other than the sequences they must utilize.

The Shell insertion sort runs with a time complexity of O(n log(n)). The insertion sorts that

utilize gap spaces run in logarithmic time relative to the size of the entire array, leaving a nearly sorted

array to be 1-sorted in linear time after they all run. Similarly, the improved bubble sort runs in

logarithmic time with large gaps, but as the gaps diminish the time nears O(n/2) time complexity that is

consistent with bubble sorting. The array must also be 1-sorted using a bubble sort, which requires

O(n/2) time as well; hence, the run time for this improved bubble sort is O(NA2).

Shell Insertion Sort

Input size Run-time (s) Num. comparisons Num. moves
1,000 0.000212 35,266 66,221
10,000 0.007962 615,529 1,166,240
100,000 0.058340 9,484,124 18,089,535
1,000,000 0.524954 135,697,411 259,684,562
Improved Bubble Sort
Input size Run-ime (s) Num. comparisons Num. moves
1,000 0.004244 1,376,990 13,095
10,000 0.141474 139,956,550 187,818
100,000 13.971682 794,952,497 2,448,540
1,000,000 [overflow] [overflow] [overflow]

These quantitative values appear to correspond to my calculations of time complexity. These
results (run time, number of comparisons, and number of moves), increase with time complexity for
their respective algorithms. Run-times for the improved bubble sort on arrays of sizes on the order of
one million elements was on the order of many minutes. If I were to continue to work on this project, I
would try to learn more about library linking, logarithms, and try to make my algorithms more

efficient.

