
ECE368 Project #4
Due Friday, April 11, 2014, 11:59pm

Description
This project is to be completed on your own. In Project #3, youimplemented a program

involving tree traversal(s) to compute the packing of rectangles, represented by a binary tree. In
that project, you assume that the given binary tree represents only one possible packing.

This project is a continuation of Project #3 in some sense. You will get a chance to earn some
of the points you lost on the programming component, but not the report component, of Project
#3. However, this project is also different from Project #3 in two ways. First, in Project #3, the
connections among nodes are explicitly specified in the input file. In this project, you will be given
the post-ordering of a strictly binary tree and you will haveto develop an algorithm to construct
the strictly binary tree. Second, in Project #3, you assume that the given binary tree represents
only one possible packing. in this project, you will learn that for a given binary tree withn leaf
nodes (i.e.,n rectangles), it can simultaneously represents 2n−3 possible packing solutions, one
of which is the solution you computed in Project #3.

Let us consider the 3-rectangle example shown in Project #3 and redrawn here. Recall that
the dimensions (width, height) of the three rectanglesx, y, andz are(3,3), (4,5), and(7,7). For
the binary tree representation shown in (a), the post-orderprinting of the tree will give you the
following:
(3.000000e+00,3.000000e+00)(4.000000e+00,5.000000e+00)(7.000000e+00,7.000000e+00)VH

where each leaf node is represented by its dimensions in parentheses(width,height), and each
non-leaf node is represented by its cutline (H or V). The smallest room (shown in (b)) containing
the three rectangles is of dimensions(11,10).

H

Vx

y z

(a) A binary tree (b) The corresponding packing

y

V

z

x
H

H

Vx

y z

(c) Re-rooting at Vy

V

V

Hy

x z

y

V

z

x
H

(c) shows another binary tree represen-
tation that can be obtained from the repre-
sentation in (a). This representation in (c)
is obtained by re-locating the root node of
the tree in (a) on the edgeVy. We call the
re-location of the root node as re-rooting.
When we re-rootVy, y is kept as the left
node ofV, as in the original tree. The par-
ent node ofV would now be the right child
node ofV in the re-rooted representation,
and the original right child node ofV now
becomes the right child node ofH, the orig-
inal parent node ofV.

Essentially, we kept theVy edge.
Hence, we made the original parent node
of V the new right child ofV. As V is the

1



right child of the original parent node, we made the originalright child ofV the new right child of
the original parent node.

H

Vx

y z

(d) Re-rooting at Vz

V

V

H z

x y

y

V

z
xH

(d) shows the binary tree representation
obtained by re-rooting the edgeVz. Here,
we kept theVz edge. Therefore, we made
the original parent node ofV the new left
child of V. As V is the right child of the
original parent node, we made the original
left child of V the new right child of the
original parent node.

The representation in (c) still requires a
room of dimensions(11,10) to pack all rectangles. However, the representation in (d) requires a
smaller room of dimensions(11,8). In other words, the representation is (d) is more optimal than
the representations in (a) and (c).

Note that while this re-rooting operation may look similar,it is actually different from the
rotation operations that are used to balance the height of a binary search tree.

The preceding example demonstrates how you may re-root a strictly binary tree representation
at edges that are separated from the original root node by just one edge. Now, we shall show you
how to re-root at edges that are farther away from the original root node.

H

H

H

V

V

V

V

1

2

3

4

5 6

8

7

(a)

(b)

(c)

(d)

V

HH

V H

VV 1

2

3

4 5

6 8

7

(a) Re-rooting at VV

V

H

H V

H

V

V

1

2

3

4

5

6

87

(b) Re-rooting at VH

H

H

V

V

H

V

V

1

2

3 4

5

6

8

7

(c) Re-rooting at HV

V

H

V

V

H

V

4

1

2

3

5

6

8

7

(d) Re-rooting at V4

H

Consider the second example in Project #3, as shown in the upper left corner of the preceding
figure. We want to re-position at the root node on the edgeV4 (d). First, note that the path from
theV4 to the root node includes the edgeHV (c), VH (b), andVV (a). Here, we do not consider
the right branch of the root node.

2



Let Re-Root(T,e) denote the new tree obtained by re-rooting at edgeeof a given treeT, where
e is one edge away from the root node ofT. LetT be the tree representation in the upper left corner
of the preceding figure. Re-rooting atV4 gives us the following new tree representation:

Re-Root(Re-Root(Re-Root(Re-Root(T,VV)
︸ ︷︷ ︸

(a)

,VH)

︸ ︷︷ ︸

(b)

,HV)

︸ ︷︷ ︸

(c)

,V4)

︸ ︷︷ ︸

(d)

The binary tree in (a) is re-rooted to form the binary tree in (b), which is re-rooted to form the
binary tree in (c), which is then re-rooted to form the binarytree in (d).

Given a strictly binary tree ofn leaf nodes (i.e., rectangles), there are 2n−1 nodes altogether.
Therefore, there are 2n−2 edges altogether. Among these edges, we do not re-root the two edges
right below the root nodes (as the re-rooting operation cannot be applied when there is no parent
node). Therefore, other than the given representation, there are 2n−4 representation. Altogether,
there are 2n−3 strictly binary tree representations for a given strictlybinary tree representation.
Therefore, there are 3 representations in the first example and 13 representations in the second
example.

Given a binary tree representation ofn leaf nodes, you will write a program to find the rep-
resentation (out of 2n− 3 representations) the uses the smallest rectangular room to enclose all
rectangles. If there are multiple representations that usethe smallest area, the representation that
has the smallest width wins.

H

H

H

V

V

V

V

1

2

3

4

5 6

8

7

(a) (e)

V

HH

V H

VV 1

2

3

4 5

6 8

7

(a) Re-rooting at VV

(e) Re-rooting at V8

V

H

H

V

H

V

V

1

2 3

4

5

6

8

7

The key to this project is to again recognize that it takes tree traversal to perform the computa-
tion. Take a look at the preceding figure, where (a) is re-rooting atVV (as in the earlier example)
and (e) is re-rooting atV8. In both cases, the smallest rectangular rooms for the rootnodeV and its
child nodeH can be computed with the rectangular rooms computed in the original tree on the left.
It is not necessary to really re-root the tree, i.e., updatesthe pointers to construct different trees.
What is again important is to figure out the necessary information to pass along as you traverse the
tree.

Deliverables:
In this project, you are to develop your own include filereroot.h and source filereroot.c,

which can be compiled with the following command:

3



gcc -Werror -Wbad-function-cast -Wall -Wshadow -O3 reroot.c -o proj4

All declarations and definition of data structures and functions must reside in the include file
or source file. The executableproj4 would be invoked as follows:

proj4 input file output file

As in Project #3, the executable loads the binary tree frominput file, performs packing,
and saves the packing intooutput file. Note that the packing in theoutput file should
correspond to the given binary tree. In other words, this part is in a sense Project #3.However,
the formats ofinput file andoutput file are different from those in Project #3 as follows:

Input file format: The input file contains a single text line that is the output ofa post-order printing
of the nodes in a strictly binary tree. Each leaf node is printed in the form of(width,height) where
bothwidthandheightare of typedouble. Each non-leaf node is represented by its cut-line, which
is an ASCII character’H’ or ’V’.

Output file format: The output file contains a rectangle per line. Each rectangleis represented by
its width, height,x-coordinate andy-coordinate, all of which of typedouble. The rectangles are
ordered according to the post-order traversal of the tree. For the 3-rectangle example, the output
is:

3.000000e+00 3.000000e+00 0.000000e+00 7.000000e+00

4.000000e+00 5.000000e+00 0.000000e+00 0.000000e+00

7.000000e+00 7.000000e+00 4.000000e+00 0.000000e+00

The output file for the 3-rectangle and 8-rectangle examplesare inr0.npck andr6.npck.

Moreover, the executable also performs re-rooting to find the binary tree representation that
gives the smallest area.

On top of the functions in Project #3, your source code shouldalso contain the following
function:

Perform re-rooting

Perform re-rooting on the binary tree you have loaded in, using data type double for your
computation of dimensions. At the end of the analysis, the program should report the following:

Preorder:

Inorder:

Postorder:

4



Width:

Height:

X-coordinate:

Y-coordinate:

Elapsed time:

Best width:

Best height:

Elapsed time for re-rooting:

The printing of the preorder, inorder, and postorder shouldfollow the format of the input file.
TheWidth andHeight should be the width and height of the smallest rectangular room containing
all rectangles based on the packing specified by the input binary tree. TheX-coordinate and
Y-coordinate should be those of thefirst triangle in the post-order traversal. The elapsed time
corresponds to the time it takes to compute one single packing solution.

For Best width andBest height, you should report the width and height of the smallest
room that encloses the packing specified by the binary tree (out of the possible 2n−3 representa-
tions for a given binary tree). The elapsed time in this part of the screen output refers to the user
time required to compute the smallest room to pack all rectangles.

Both elapsed times do not include the time it takes to load thebinary tree representation and to
save the packing. The screen output of the 3-rectangle and 8-rectangle examples are available as
r0.log.proj4 andr6.log.proj4.

Grading:
The project requires the submission (through Blackboard) of the C-code (source and include

files) and a report detailing the results.Your report should focus only on the re-rooting part, i.e.,
the part not overlapping with Project #3.There should be a table listing the run-times, and the
outputs of the optimal packing (width, height) obtained from running your code on some sample
input files. In your report, also comment on the run-time and space complexity of your re-rooting
algorithm. Also comment on the data structures and algorithm used to construct a strictly binary
tree from the given input, and the space and time complexity of your tree construction algorithm.
Your report should not be longer than 1 page and should be in plain text format or pdf.

Getting started:
The sample input files in the new format are provided as a zip file. The output files and screen

output for two of the examples (r0 andr6) are also provided. Copy over the files from the Black-
board website. Check out the Blackboard website for any updates to these instructions.

5


