ECE368 Project #4
Due Friday, April 11, 2014, 11:59pm

Description

This project is to be completed on your own. In Project #3, yoplemented a program
involving tree traversal(s) to compute the packing of regtes, represented by a binary tree. In
that project, you assume that the given binary tree reptesety one possible packing.

This project is a continuation of Project #3 in some sense. Witl get a chance to earn some
of the points you lost on the programming component, but netreport component, of Project
#3. However, this project is also different from Project #3wo ways. First, in Project #3, the
connections among nodes are explicitly specified in thetifilgeu In this project, you will be given
the post-ordering of a strictly binary tree and you will hagedevelop an algorithm to construct
the strictly binary tree. Second, in Project #3, you assumaé the given binary tree represents
only one possible packing. in this project, you will learmttfior a given binary tree with leaf
nodes (i.e.n rectangles), it can simultaneously represemts-3 possible packing solutions, one
of which is the solution you computed in Project #3.

Let us consider the 3-rectangle example shown in Projectw3redrawn here. Recall that
the dimensions (width, height) of the three rectangles andz are(3,3), (4,5), and(7,7). For
the binary tree representation shown in (a), the post-qudating of the tree will give you the
following:

(3.000000e+00,3.000000e+00) (4.000000e+00,5.000000e+00) (7.000000e+00,7.000000e+00) VH

where each leaf node is represented by its dimensions imghasegwidth, height), and each
non-leaf node is represented by its cutlitieo V). The smallest room (shown in (b)) containing
the three rectangles is of dimensiqig, 10). @)

(c) shows another binary tree represen-
tation that can be obtained from the repre-

sentation in (a). This representation in ((V) [X];
is obtained by re-locating the root node o H -
the tree in (a) on the edgey. We call the |7 z
re-location of the root node as re-rooting. (y) (2) !
Vv

When we re-rooVy, y is kept as the left
node ofV, as in the original tree. The par- (&) Abinary tree (b) The corresponding packing
ent node ol would now be the right child
node ofV in the re-rooted representation,
and the original right child node & now
becomes the right child node b, the orig- | z
inal parent node 0¥ . ® O ‘; = © Q |7
Essentially, we kept theVy edge.) '
Hence, we made the original parent node
of V the new right child oV. AsV is the

(c) Re-rooting at Vy

right child of the original parent node, we made the orignngtht child ofV the new right child of
the original parent node.

(d) shows the binary tree representation R
obtained by re-rooting the eddyez Here, NS 7|=
we kept thevVzedge. Therefore, we mad@ N :

the original parent node &f the new left
child of V. AsV is the right child of the
original parent node, we made the original
left child of V the new right child of the
original parent node. (d) Re-rooting at Vz

The representation in (c) still requires a
room of dimensiong11,10) to pack all rectangles. However, the representation inddjires a
smaller room of dimensiond.1,8). In other words, the representation is (d) is more optimahth
the representations in (a) and (c).

Note that while this re-rooting operation may look similarjs actually differentfrom the
rotation operations that are used to balance the height infaaybsearch tree.

The preceding example demonstrates how you may re-roattyshinary tree representation
at edges that are separated from the original root node bypfgsedge. Now, we shall show you
how to re-root at edges that are farther away from the origowt node.

s

(a) Re-rooting at VV

=> ©] °

’/\\ /,
<

® ® ®
S O @ 0 @ ®
S hHh &6 & ®
&S o @ @% ®/CR
2
& ® ole (i
(b) Re-rooting at VH e e @ G
(¢) Re-rooting at HV D O

(d) Re-rooting at V4

Consider the second example in Project #3, as shown in ther lgip corner of the preceding
figure. We want to re-position at the root node on the edg€d). First, note that the path from
theV4 to the root node includes the edg® (c), VH (b), andVV (a). Here, we do not consider
the right branch of the root node.

LetRe-Root(T,e) denote the new tree obtained by re-rooting at ezlgfea given treel’, where
eis one edge away from the root nodelofLet T be the tree representation in the upper left corner
of the preceding figure. Re-rooting\&4 gives us the following new tree representation:
Re-Root(Re-Root(Re-Root(Re-Root(T,VV),VH),HV),V4)

@

'

(b)

-~

(©

'

d

The binary tree in (a) is re-r(()c))ted to form the binary treeh)) (hich is re-rooted to form the
binary tree in (c), which is then re-rooted to form the bintge in (d).

Given a strictly binary tree afl leaf nodes (i.e., rectangles), there ane-21 nodes altogether.
Therefore, there aren2- 2 edges altogether. Among these edges, we do not re-rootthedges
right below the root nodes (as the re-rooting operation aaba applied when there is no parent
node). Therefore, other than the given representatiore e 2 — 4 representation. Altogether,
there are 8 — 3 strictly binary tree representations for a given strittiyary tree representation.
Therefore, there are 3 representations in the first exammueld representations in the second
example.

Given a binary tree representationrofeaf nodes, you will write a program to find the rep-
resentation (out of 2— 3 representations) the uses the smallest rectangular ro@nciose all
rectangles. If there are multiple representations thathisaemallest area, the representation that
has the smallest width wins.

-~

-~

(e) Re-rooting at V8

The key to this project is to again recognize that it takes traversal to perform the computa-
tion. Take a look at the preceding figure, where (a) is reingaatVV (as in the earlier example)
and (e) is re-rooting at8. In both cases, the smallest rectangular rooms for thenadV and its
child nodeH can be computed with the rectangular rooms computed in thmat tree on the left.

It is not necessary to really re-root the tree, i.e., updttegointers to construct different trees.
What is again important is to figure out the necessary inftiondo pass along as you traverse the
tree.

Deliverables:
In this project, you are to develop your own include fikeroot . h and source fileeroot . c,
which can be compiled with the following command:

3

gcc —Werror -Wbad-function-cast -Wall -Wshadow -03 reroot.c -o proj4

All declarations and definition of data structures and fiomst must reside in the include file
or source file. The executabieoj4 would be invoked as follows:

proj4 input_file output_file

As in Project #3, the executable loads the binary tree ftaput _file, performs packing,
and saves the packing intmtput_file. Note that the packing in theutput_file should
correspond to the given binary tree. In other words, thistpgain a sense Project #31owever,
the formats ofinput_file andoutput_file are different from those in Project #3 as follows:

Input file format: The input file contains a single text line that is the outpw pbst-order printing

of the nodes in a strictly binary tree. Each leaf node is pdni the form ofwidth, height) where
bothwidthandheightare of typedouble. Each non-leaf node is represented by its cut-line, which
is an ASCII charactett’ or *V’.

Output file format: The output file contains a rectangle per line. Each rectasgipresented by
its width, heightx-coordinate ang-coordinate, all of which of typéouble. The rectangles are
ordered according to the post-order traversal of the tree.tie 3-rectangle example, the output
is:

3.000000e+00 3.000000e+00 0.000000e+00 7.000000e+00
4.000000e+00 5.000000e+00 0.000000e+00 0.000000e+00
7.000000e+00 7.000000e+00 4.000000e+00 0.000000e+00

The output file for the 3-rectangle and 8-rectangle exanguresnr0.npck andr6.npck.

Moreover, the executable also performs re-rooting to firelldimary tree representation that
gives the smallest area.

On top of the functions in Project #3, your source code shaldd contain the following
function:

Perform re-rooting

Perform re-rooting on the binary tree you have loaded inpguisiata type double for your
computation of dimensions. At the end of the analysis, tlog@am should report the following:

Preorder:
Inorder:

Postorder:

Width:
Height:

X-coordinate:
Y-coordinate:

Elapsed time:

Best width:
Best height:

Elapsed time for re-rooting:

The printing of the preorder, inorder, and postorder shénildw the format of the input file.
Thewidth andHeight should be the width and height of the smallest rectangutanrcontaining
all rectangles based on the packing specified by the inpatrpittee. TheX-coordinate and
Y-coordinate should be those of thirst trianglein the post-order traversal. The elapsed time
corresponds to the time it takes to compute one single pgdatution.

For Best width andBest height, you should report the width and height of the smallest
room that encloses the packing specified by the binary tneteofdhe possible 2— 3 representa-
tions for a given binary tree). The elapsed time in this pathe screen output refers to the user
time required to compute the smallest room to pack all regésn

Both elapsed times do not include the time it takes to loadbthary tree representation and to
save the packing. The screen output of the 3-rectangle ardt8ngle examples are available as
r0.log.proj4 andr6.log.proj4.

Grading:

The project requires the submission (through Blackboafdhe C-code (source and include
files) and a report detailing the resultéour report should focus only on the re-rooting part, i.e.,
the part not overlapping with Project #3There should be a table listing the run-times, and the
outputs of the optimal packing (width, height) obtainedraunning your code on some sample
input files. In your report, also comment on the run-time goace complexity of your re-rooting
algorithm. Also comment on the data structures and algorited to construct a strictly binary
tree from the given input, and the space and time complexiypor tree construction algorithm.
Your report should not be longer than 1 page and should beain t#xt format or pdf.

Getting started:

The sample input files in the new format are provided as a &pTihe output files and screen
output for two of the examples @ andr6) are also provided. Copy over the files from the Black-
board website. Check out the Blackboard website for anytesda these instructions.

