

Stephen Corya
ECE 362
Pre-Lab #3

Introduction:

The purpose of this lab is to performing arithmetic operations on the HC(S)12 board. Learned concepts will include signed and unsigned numerical computation, as well as loops.

Lab 3.1.1:

Objective/Purpose:

The purpose of this experiment is to solve a linear equation, the result of which will be rounded to the nearest integer.

Expected Results:

Given an equation in slope-intercept form, with values with slope and intercept values provided, calculate 'y'.

Code:

```
XDEF Entry
XREF __SEG_END_SSTACK

Variables:      Section
Val:           ds.b 0      the 'x' variable in y=mx+b

Constants:      Section
Slope:          dc.b 68    ;the integer value of slope 'm'
Intercept:      dc.b 12    ;the y-intercept value 'b'

Code:           Section

Entry:
    LDS      #__SEG_END_SSTACK
    LDAA    Val      ;store variable 'x' in acc. A
    LDAB    Slope    ;store the constant 'm' in acc. B
    MUL     ;multiply 'x' * 'm'
    ADDD   Intercept ;add constant 'b'
    nop
```

Lab 3.1.2:

Objective/Purpose:

Similar to 3.1.1, we will calculate a result given an equation, for which all requisite variables will be defined.

Expected Results:

Given a parabolic equation, we will calculate its output 'y' given

Code:

```
XDEF Entry
XREF __SEG_END_SSTACK
Variables:      Section
Val:           ds.b 0      the 'x' variable in y=mx+b

Constants:      Section
Slope:          dc.b 68    ;the integer value of slope 'm'
Intercept:      dc.b 12    ;the y-intercept value 'b'

Code:           Section
```

Entry:	LDS	#__SEG_END_SSTACK
	LDAA	Val ;store variable 'x' in acc. A
	LDAB	Val ;store the same variable 'x' in acc. B
	MUL	;acc. A * acc. B => D = x^2
	LDY	Slope ;store 'm' in register Y
	EMUL	;multiply D (x^2) x reg. Y (m)
	ADDD	Intercept ;add constant 'b'
	nop	

Lab 3.2:

Objective/Purpose:

The purpose of this experiment is to test how sundry arithmetic operations affect the condition code register or CCR. We will then change the code and determine the value of accumulator A depending on the various branch instructions.

Expected Results:

Depending on input variables, the flags within the CCR should change.

Code:

```

XDEF Entry
XREF __SEG_END_SSTACK
MyConstant: section
num_1: dc.b $40
num_2: db.b $50
MyCode: section
Entry: ldaa num_1
        adda num_2
        nop
;-----
XDEF Entry
XREF __SEG_END_SSTACK
        ldaa #$D3
        adda #$F2
        bvs done
        ldaa #0
done:  nop
;-----
XDEF Entry
XREF __SEG_END_SSTACK
        ldaa #$D3
        adda #$F2
        bcs done
        ldaa #0
done:  nop
;-----
XDEF Entry
XREF __SEG_END_SSTACK
        ldaa #$D3
        adda #$F2
        bvs done
        ldaa #0
done:  nop
;-----
XDEF Entry
XREF __SEG_END_SSTACK
        ldaa #$41

```

```

adda  #$5A
bvs   done
ldaa  #0
done: nop

```

Lab 3.3:

Objective/Purpose:

We will write a program in assembly language to turn a stepper motor, connection to Port P. We will learn how to implement a delay using a loop.

Expected Results:

The assembly loop should repeat and the motor should spin clockwise.

Code:

```

XDEF  Entry
XREF  __SEG_END_SSTACK
MACROS:
spin: macro           ;move the stepper motor clockwise turn
    movb  #$0A, DDRP ;1/4 turn clockwise
    movb  #$12, DDRP ;1/4 turn clockwise
    movb  #$14, DDRP ;1/4 turn clockwise
    movb  #$0C, DDRP ;1/4 turn clockwise
endm

LOOP: equ   $8000      ;set the location of the program
      spin    ;run the macro that turns the motor
      bra    LOOP      ;return to the beginning of the program

```