
1

ECE36200 Final Lab Project Report

Smart-Self Sustaining Garden

Team Members: Stephen H. Corya, Andrew A. Lorenz

April 26th, 2024



2

Table of Contents:

List of Tables and Figure …………………………….3
Introduction…………………………………………...4
Design and Purpose………………………………..….5
Hardware Implementation of the Smart Garden…...….5
Software Implementation of the Smart Garden………..6

The main loop………………………………….6
The event loop………………………………….6
General Flow……………………………………7
The Keypad Subroutine…………………………8
The Menu Subroutine…………………………..10
The Watering Subroutine……………………….10
The Password Subroutine……………………….12
The Circulation Subroutine……………………...13
The Wall Clock Subroutine……………………...14
The Growligts Subroutine……………………….15
The Sow Subroutine……………………………..15
The Plot Subroutine……………………………...15

Error Handling and Fail Safe Techniques………………..16
Extra features…………………………………………….16
Distribution of work……………………………………..16
Issues with the project outcome…………………………16
Discussion and suggestions for future improvements…..16
User Manual……………………………………………..17
Conclusion………………………………………………19



3

List of Tables and Figures:

Figure 1(in the title page)

Figure 5.b.1

Figure 5.b.2

Figure 5.b.3

Figure 5.b.4

Figure 5.b.5

Figure 5.b.6

Figure 5.b.7

Figure 10.1

Figure 10.2

Figure 10.3

FIrgure 10.4

Figure 10.5

Figure 10.6



4

Introduction:

The Smart Self-Sustaining Garden is a simple concept that is easy to understand just from
observing the title. The purpose here is to simulate the core aspects of a working garden that can
function on its own with limited, but necessary, user input. This will be achieved by creating an
HC12 assembly language code to control a MC9S12E128 microcontroller. This device in the Lab
will give all the needed functionality for simulating the garden. The device will simulate details
including: generation of the layout of the garden, temperature adjustments, controlling LEDs, a
watering system, and displaying the time and date.



5

Design and Purpose:

To begin, the used I/O board features will be described here. First, the LCD screen,
located on the lowest portion of the board, serves the most basic purpose. This purpose is to
display our menu options, show valuable data about the garden, and inform the user the action is
being performed. Next, the hex-keypad, on the bottom right corner, is another important part of
the design in the project for the purpose of performing the menu actions, entering the password,
and entering data about the time and date. For the simplicity of the design, we did not use the
buttons 8-F for any of the actions except for the password. Third, we used the LEDs located on
the bottom left corner of the board. These LEDs only light up when the correct password is
entered. However, the buttons on the keypad do not use the LEDs but instead on the switches
lower down. Next, above the LEDs is the potentiometer. This is a dial that controls the speed of
the DC motor further up on the board near the left corner, reflecting the fan used in a garden.
This is related to the LCD screen because, depending how fast the motor is spinning, the LCD
will display the temperature in the garden. Below the DC motor, is the stepper motor, which is
used like a sprinkler in a garden when we input the button to water the garden. These are all the
important features of the board we have used in the project.

Hardware implementation of the Smart Garden:

This is how the hardware will function when the project code runs. When the program begins,
the LCD screen will display “Password:” and we are able to enter any password we want since
we were unable to hardcode the password. Once that is done, the DC motor will spin, and the
LCD board will display the menu. Each option is shown for 2 seconds before displaying the next
one and cycles back once the last option is shown. There are 7 actions that can be performed by
pressing one of the buttons on the keypad.

1 is the watering action which will activate the stepper motor. The motor will rotate two steps
forward and one step back on each interval. The stepper motor only runs for about 4 seconds
until it stops as intended. The LCD screen, at the same time, will display “watering…” and then
will return to cycling through the menu options when it is done.

2 is the “show temperature action which will display the temperature of the garden. The
potentiometer is the dial that will change the speed of the DC motor. The DC motor will spin and
and stop for the second and spin again when is is used. When the potentiometer is turned all the
way down, the motor stops completely, and the LCD screen will display it’s lowest temperature
of 66 degrees. When is is turned up entirely, the dc motor will constantly spin, and the lCD
screen will show 80 degrees.

3 is “show time”. This will display our default time of 01/01/1970. This is a constantly running
clock but it is significantly slower than the normal clocks used everyday. This time and date can



6

be changed manually through the “change time” action for button 4. When we press that button,
the LCD board will show the prompt to enter our password. We then proceed to manually enter
in the time and date. When that action is completed, we press the 3rd button and we see that it is
exactly the time we entered before.

5 is for resetting the password. This allows us to enter a different password once the old
password is entered again.

6 is our planting feature. This is is to place plant in our garden and when we press number 7 on
our keypad afterwards, the LCD screen will show the characters that imitate the visual of a
garden. If 6 is not pressed, the garden will be empty.

Software Implementation of the Smart Garden:

The general software controls for this project are handled by the real-time interrupt routine,
which we have called an “event loop.” The event loop runs every four milliseconds. In general,
the event loop sets flags which are then read by the subroutines called in the main.asm program.
The subroutines called by the main.asm file run with much greater frequency than the control
flags set in the event loop. Because the event loop runs every four milliseconds and the main
loop runs at the full speed of the microcontroller’s clock, flags set in the event loop are read (for
our purposes) immediately by the subroutines called in the main loop.

The Main Loop:

Within the file main.asm are all of the variables and flags that will be used by the subroutines as
well as the event loop. The main loop calls subroutines Password, Menu, Circulation, Water,
Growlights, Keypad, and Wall (Clock). These subroutines are run indiscriminately in the main
loop. The controls and conditions for their executions are set via flags from the event loop.

The Event Loop:

The “event loop,” defined in eventloop.asm, is the RTI loop. It runs at a four millisecond
interval. The event loop handles the bulk of user interface controls with its timers and flags.



7

General Flow:

Upon the initial start of the program, the user is prompted for a password. No other subroutines
are called until a password is entered, and the RTI loop exits without running any subsequent
steps nor setting any flags, the wall clock flag indicating a second has passed notwithstanding.

Figure 5.b.1: General Program Flow

After password initialization, the two loops (the event loop and the main loop) begin to
coordinate with one another to run the various functions of the software. The main user input
device, the Keypad, is called as a subroutine within the main loop. The main loop listens for
keypresses, which are in turn read by the event loop.

Given that the event loop runs only every four milliseconds and the main loop runs as fast as the
microcontroller’s onboard clock permits, one may find it prudent to consider the events from the
main loop as happening before events from the event loop.



8

Now that the general flow of the software features has been outlined, let us further examine how
the two loops communicate with one another. Subsequent figures within this section will assume
that the password has been initialized, and that the event loop and the main loop are both
running.

Within the main.asm file, a variety of bytes and words are defined and initialized. Many of these
are event flags. These event flags are generally set within the event loop, to be read within the
main loop. Oftentimes, when an event is read by the main loop, a subroutine will act on this
event, then change the event flag. This is not the case with the keypad; the main loop reads the
keypress, sets its value in the appropriate variable, and then it is read within the event loop. In
the case of the keypad, a variable is set within main, read by the event loop, then changed upon
the completion of some instructions in the event loop.

The Keypad Subroutine:

The keypad was extended from the versions in the previous laboratory projects to allow for
configuration. By setting variables, which are defined in the main.asm file, the keypad can be
configured to await or not to await a keypress, as well as to await or not to await a keyrelease.



9

Figure 5.b.2: Keypad Subroutine Flow

Depending on the values read from the Keypad subroutine, the event loop sets several state
variables which define how the other subroutines in the main loop will run. In general, the event
loop resets these variables after altering the other state variables.

The Menu Subroutine:

This subroutine is responsible for the primary user interface: a menu that shows which keypress
will trigger one of the program’s functions. The menu cycles through the user’s options,
displaying one option at a time. Each option has a corresponding number, which in turn
corresponds to a keypad number. The menu cycling functionality is set by a timer in the event
loop. When this timer reaches its predefined limit, a variable controlling which menu option is
displayed is incremented. The variable is reset within the Menu subroutine after the final option
has been presented to the user, and the Menu again displays the first option.



10

Figure 5.b.3: Menu Subroutine Flow

The Watering Subroutine:

The watering function is the first menu option presented to the user. Upon the press of the “1”
button, the event loop, on its next execution, reads this input and reacts by setting the state
variable which causes the Watering subroutine to run; simultaneously, the menu is hidden.

In addition to the variable which defines whether or not the garden is in its watering state,
another state variable controls the sprinkler (the stepper motor.) The sprinkler variable is a
simple flag that is set within the event loop, then cleared within the Watering subroutine, after
the motor has moved. Note: the sprinkler may have run more smoothly if its event flag was both
set and cleared within the event loop.



11

Figure 5.b.4: Watering Subroutine Flow



12

The Password Subroutine:

The Password subroutine handles two different password operations: initialization and reset. The
general program does not run any subroutines or fire any events (other than the wall clock) until
the password is initialized. Initialization is controlled by a state variable, which is unset until the
password is successfully read for the first time. A password consists of eight characters. Any
password that can be input on the keypad can be set in the initialization phase. The password
prompt displays underscores for characters that have not been set, and asterisks for characters
that have. This provides the user with a visual representation of how many characters he has
entered so far. Upon initialization, the password is stored in RAM.

Similar to initializing the password, resetting the password is controlled by a state variable. This
variable is set to all 1’s when the user has selected the option to reset his password. The user will
be prompted for his current password. If he does not enter it correctly, he will be prompted again.
A feedback interface with underscores and asterisks is provided to the user in a manner much the
same as when he initializes his password. Resetting the password is a synchronous operation; it
blocks other input and output until the user enters his entire password. Upon successful entry of
the current password, the user will be prompted to enter a new password.



13

Figure 5.b.5: Password Subroutine Flow

The Circulation Subroutine:

The Circulation subroutine spins the circulation fan (DC motor) and prints the temperature to the
LCD screen. The calculation of the temperature is such that the temperature increases as the fan
speed decreases, and both of these variables are set according to the value read from the
potentiometer. The potentiometer is read within the event loop, and the calculation of both the
fan speed and the temperature are handled by the event loop. The event loop sets a flag that is
read by the Circulation subroutine and which outputs a pulse-width modulated signal to the DC
motor.

Figure 5.b.6: Circulation Subroutine Flow



14

The Wall Clock Subroutine:

The Wall Clock subroutine, sometimes referred to as “Wall” outputs the real-world time. It
defaults to one of the programmers’ birthday. The clock has been programmed such that there are
exactly thirty days for every month, so there are only three-hundred sixty days in the year. We
use the American date format of “month/day/year” and twenty four hour time. The main loop
calls the Wall subroutine, and the event loop fires an event with every second passed. This is
cleared after it is detected and acted upon in the Wall subroutine. The Wall subroutine counts
these seconds, and with those values, increments the minute, hour, day, etc.

There are two menu options for the wall clock: set and display.

Setting the clock is similar to setting or resetting the password, and it requires the correct
password to be input before the time can be set. The means of checking the password before
setting the date and time are the same as those used when resetting the password. When setting
the date and time, the values yet to be input have their places held by underscores on the LCD
display.

Within the setting function, the user is only able to enter valid values. That is, it is not possible to
enter “12/32/1993” or “13/01/1995” as the current date. If the user attempts to enter an invalid
value, the underscore is not replaced by the number input by the user, and the user should again
attempt to input a valid value.

Showing the clock requires the conversion of the values of the current month, day, year, etc.
values to ASCII. This is done using division by tens, hundreds, and thousands, and using the
quotient and reminder from these division instructions.



15

Figure 5.b.7: Wall Clock Subroutine Flow

The Growligts Subroutine:

Owing to the simplicity of this subroutine, a flow may be regarded as superfluous. The
subroutine simply pushes the various registers and accumulators to preserve them atop the stack,
reads the DIP switches into Accumulator A, writes this value to the LED’s, restores the registers
and accumulators via pull instructions, then exits.

The Sow Subroutine:

The Sow subroutine displays “Planting…” on the LCD screen, and it sets the seeds planted flag
to all ones.

The Plot Subroutine:

This subroutine checks if the seeds have been planted. If they have, it checks the month during
which the seeds were sown. If the seeds were not planted in April or May, then the plot is empty;
otherwise, a crude emulation of plants and flowers is shown on the LCD.



16

Error Handling and Fail Safe Techniques:

Within the event loop, many variables are set which control the state of the subroutines called in
the main loop. These variables should be mutually exclusive, and many should not be defined
simultaneously. For example, if the system is watering, the user should wait for the watering to
conclude before viewing the temperature.

The flag that indicates whether or not the password has been set is checked not only in main.asm,
but in many of the subroutines. Nothing should happen in the program until the password is set.

Extra features:

In addition to our core features, we added 2 simple features that enhance the user experience.
The first feature includes password encryption. This is a common feature for all password
systems to prevent others from easily seeing the password.

The second feature is the condition that the planting will only work outside of the monthly range
from January to March. This is only for simulating that it is only realistic to start a plantation in
the spring and summer.
For our distribution of work on this project, both of us fulfilled key roles for the success of the
project.

Issues with the project outcome:

Though, the smart garden was certainly functioning reasonably well, there were a few features
that were hindering the user experience. First of all, the safety feature of the alarm was not
working at all. It would not run when we wanted it to.

Discussion and suggestions for future improvements:

The password entry was fast and responsive when setting the password initially, before any of
the other code ran; however, subsequent entry of the password (and date/time) was significantly
sluggish by comparison. The cause of this undesirable behavior could be explored.

One improvement to execution time could be done by firing a “screen refresh” event within the
event loop and/or the Menu subroutine whenever the screen needs to update. This would prevent
the screen from being refreshed on the LCD when none of the characters displayed were
changed.

Another improvement could be made by not pulling or pushing registers that are not used within
subroutines. In its current version, every subroutine pushes every register and accumulator, and
then pulls each of those at the end. This being done with great rapidity within the main loop
could be the cause of significant performance degradation.



17

Within the event loop, variables are loaded into registers unnecessarily. Each timing variable is
loaded into Register X, incremented, stored into Register X, reloaded from Register X, and
finally compared to its maximal value. It is not necessary to store and reload the timing variable
from the register. Only the first load and the comparison are necessary.

User Manual:

This is the Smart Garden guide that will help anyone know how to use this smart garden on the
I/O board. When you start this program. You will be prompted on the LCD screen to enter the
password shown in this image here:

Figure 10.1
You can enter any password you prefer and it should be something easy to remember. Once that
is done you are presented with a multitude of options each displaying on the LCD screen and
cycling through one by one. These options are: 1. Water Plants, 2. Show Temp, 3. Show Time, 4.
Set Time and Date, 5. Change Password, 6. Plant Seeds, and 7. Show Plot. Note: there is a DC
motor located on the top left corner of the image that runs constantly after you enter the
password. This is for imitating a fan in a garden.

When you press 1 on the Keypad, you will see the screen show watering and the stepper motor
will spin a way that acts like sprinkler. If you hold down the button, it will continue to “water
plants” indefinitely. Otherwise the screen will go back to the menu.



18

Figure 10.2

If you press button 2, you will be shown the temperature of the garden. There is a white dial on
the board, above the 8 LEDs called the potentiometer, or POT for short. If you turn that, you will
control how fast the DC motor will spin. Depending on the speed of this motor, the screen will
display a range of temperatures from 66 to 80 degrees Fahrenheit. The motor will stop entirely if
you turn down the dial all the way.

Figures 10.3 and 10.4

When you press button 3, this will show the default time set be the code of 01/01/1970. To
change this time, press button 4 when the menu shows up again and you will be prompted to
enter your password you made. After entering you password, you may now enter the current date
and time of day on the screen with the keypad. Once that is done, the screen will display the
menu again. Note: the date is a constantly running clock but it does not run quite as fast as the
clocks we use everyday.



19

Figure 10.5

Next there is the feature that you may want to sometimes use, this being the change password
feature. You can do this by pressing button 5 on the keypad. You will be prompted to enter your
current password and only then will you be able to enter your new password. You will be
returned to the menu after this.

Next you can simulate plantation with buttons 6 and 7. If you press button 7 first, it will show an
empty plot. However, press button 6 and the screen will inform you the seeds are being sown.
Press button 7 and you will see on the screen exactly like Figure 10.6. If you attempt to do this if
you date and time are between January and April, the seeds will not grow and you will again see
an empty plot. The plants will also disappear if you change the time to the monthly range of
January to April after planting the seeds.

Figure 10.6



20

Hopefully, this user’s guide was helpful for learning how to use this smart garden on an I/O
board.

Conclusion

This project has been helpful in understanding two key concepts about creating a simple
machine. First, through this project, we had come to understand how to create subroutines for
many of the different features of the garden and applying this knowledge into this project.
Second, the only true way to be able to hard code any machine, you must be able to have a deep
understanding of writing assembly code if we want to be efficient with what the machine can do.
This project was a challenge to understand and work over, but it helped to understand how we
manufacture our machines.


