D ... - 'l":
L' 362 - 'ull'_‘HJH;‘Ilf 4 rRey FipL

Ioxperimental Procedure:
I.ab 3.1.1: Straight Line

Create a4 new project for this lab. Write and test an assembly language program that solves the
following straight linc equation for y:

y=mx+0

Gienerate an integer result as close as possible that solves the following straight-line equation for
y. Generate an integer result as close as possible to the actual answer. Assume variable x is always
an unsigned 8-bit number.

The slope (m) is equal to 0.68 and the offset (b) is equal to 12. Leave the result in accumulator A.
Assume value X is in the memory location labeled va1. Use assembler directives 1o define these
values. Note that the result will always fit in 8 bits.

Test and confirm the program is working properly by testing the following values in val. Modify
val using the data window in the debugger.

val = 0 Result:

s
val = 10 Result: [%

Val = 75 Result: é ?/'
Val = 200 Result: /‘7/8

val = 255 Result; lg‘Z

— — —

Extra Credit: The number after the decimal point will always be truncated off of the result. The
result will not be rounded up. For extra credit on the lab checkout, display the number to the left
of the decimal point in register A and the result to the right of the decimal point in register B.

8] © I. Lee, C. Glick, N. Wheeler

ECE 362 - Experiment 3 Res

P
.

[.ab 3.1.2: Parabolic Line

Write and test an assembly lan guage program that solves the following equation for y. Assume
variable x is an unsigned 8-bit number.

y=mx?+h

The slope (m) is equal to 0.68 and the offset (b} is equal to 12. Leave the result in register D.
Assume value X 1s in the memory location labeled va1. Use assembler directives to define these
values. Note that the result will always fit in 16 bits.

Test and confirm the program is working properly by testing the following values in vz1. Modify
val using the data window in the debugger.

val = 0 Result: |z

Val = 10 Result: 50

Val = 75 Result- 3@3'72
Val = 200 Resul: <7 2| ¢
255 Result 74279

Val

Hint: Using the scaling approach outlined in this experiment will result in a number that is larger
than the available registers of the HC(S)12. The above program can be wntten without having to
write a complex algorithm to handle a large 32-bit number. Use the reference manual to select the
correct arithmetic instruction. If done correctly, the program will return an accurate result.

9] © J. Lee, C. Glick. N. Wheeler

FCFE 362 - Frperiment Rev -

i
J
JJJ

[.aboratory 3.2.1: Condition Code Register

The program below defines num 1 2s a byte contamning 0x40 and nux_2 as a byte containing 0x50.
The program loads accumulator A with nu=_1 and then adds num_2 to the accumulator.
My Constant: section

num_1 dc.b $40
nun_2: dc.b $50

My Code: section

Entry: ldaa rl.u.l_l
adda num_2
nop

Start a new project and enter the code above. Assemble and run your program. Step through the
program (until the nop instruction is reached) and show the contents of Accumulator A after

program exgcution.

90

Show the states of the following bits of the Condition Code Register (CCR) after execution.

A=

Carry Flag (C) Set [| B eayf
Overflow Flag (V) Set[] Clear [T
Negative Flag (N) Set [] Cl ear[/]/
Zero Flag (Z) Set|[] % ear/V]’

Now change num 1 to 0xFé and num 2 to 0xEc and run the program again. The values for num 1
and num 2 will have to be changed in the program and the program will have to be reassembled
and reloaded into memory. Run the program and fill in the blanks below.

What are the contents of Accumulator A after program execution? Sf 5 2'

Show the states of the following bits of the Condition Code Register (CCR) after execution.

Carry Flag (C) Set Clear | |
Overflow Flag (V) Sat([{}/ Clear i
Negative Flag (N) Set’[] Clear [/
Zero Flag (2) Set [] Clear’[_/

[10] © J. Lee, C. Glick, N. Wheeler

PO WD Py Py L/4

{ 'IHHH!_!' v b e i o e PIEHEERETT Bt Pl o thie bbby belowy
e r/’
WAL e the comtenta af Acoummltor A ultes ettt execilion? /

Show the atatea of the following bits af the Condition Code egister (€31 after ereoition

Canry lag (€) ."w_r/l/r (Clear | |

Overtow Flap (V) ”‘“U/r Clear ||
Negative |lag (N) Yol | | Clear)1,
Zero lag (/) STHN { ir:urM

Change nom 1o aw and num 2 4o gz and ran the program again, Vil in the blanks below.
What are the contents of Accummlator A aftes program execution”’ i "/_' Z

Show the states of the following bits of the Condition Code Register (COIR) after execition.

Carry Flag (C) Hr,:y/l Clear | |
Overftlow Flag (V) Set Y7 Clear | |
Nepative Flag (N) Bet | | le:mg
Zero Flag (7)) Set | | Clear

Change the program so that both voe 1 and qum 7 are o2v and change the ros instraction 10 4
sups mstruction, Reassemble and run the program. Fill in the blanks below.,

What are the contents of Accumulator A after program execution” —IL Q 2

Show the states of the following bits of the Condition Code Register (CCR) after execution.

Carry Flag (C) Set [| Clearj A
Overflow Flag (V) Set| | Clear ¥

Negative Flag (N) Set| | Clear [A
Zero Flag (7)) Set Clear []

Change the above program o that wov 2 18 02909, Run the program and fill in the blanks below.

What are the contents of Accumulator A after program execution? i 20

Show the states of the following bits of the Condition Code Register (CCR) after execution.

Carry Flay (C) Set [] Clear [f
(verflow I'Iag ﬁ/j Set I l Clm!/r

Negative Flay (N) Sy Clear |
Laro Flag (7.) Sef|] Clear

(11 ©). Lee, C. Glick, N. Wheeler

[.aboratory 3.2.2:

Write a short program that loads accumulator A with 0x12 and defines a variable vae 1 as a byle

.30. The code to define a byte is given below. The program should

of storage initialized with
1. The ~vra instruction

then use the ~Mzz instruction to compare the value in accumulator A to VAF
compares the two values by “subtracting” var_1 from the value in accumulator A, but does not

-hanee either value. Run the program and fill in the blanks below.
{12

L9 Tl

What are the contents of accumulator A after program execution?

Show the states of the following bits of the Condition Code Register (CCR) after execution.

Carry Flag (C) Set [] Clear |

Overflow Flag (V) Set [| Clear [f'f

Negative Flag (N) Set| | Clear

Zero Flag (Z) Set [| Clear
Laboratory 3.2.3:

Enter, build, and run the following programs and determine the value in accumulator A when the
NoP instruction is reached.

ldaa #%D3
adda #8F2
bvs done
ldaa #0

done : nop

What are the contents of Accumulator A after program execution? ﬁ{ Q g 5

ldaa #8D3
adda #$F2
bcs done
ldaa #0

done : nop

OO

What are the contents of Accumulator A after program execution?

Y flcll 4

ldaa #$41
adda ¥$5A
bvs done
ldaa #0
done: nop
What are the contents of Accumulator A after program execution? ﬁ OO o 3

i i

© J. Lee, C. Glick, N. Wheeler

1771
| _r’

