ECE 264 — Spring 2013
Huffman Coding

(Derived from an assignment by Professor Vijay Raghunathan)

Huffman coding is a widely used compression algorithm used in JPEG compres-
sion as well as in MP3 audio compression. This document explains the technique.
Please see the respective SPEC files for PA10 and PA11 for concrete details on
what to do.

1 ASCII Coding

Many programming languages use ASCII (which stands for American Standard
Code for Information Interchange) encoding to represent characters. In ASCII
encoding, every character is encoded (represented) with the same number of bits
(8-bits) per character. Since there are 256 different values that can be represented
with 8-bits, there are potentially 256 different characters in the ASCII character
set, as shown in the ASCII character table available at http://www.asciitable.com/.

Let us now look at a simple example of ASCII encoding of characters. Using
ASCII encoding (8 bits per character) the 13-character string ”go go gophers” re-
quires 13 * 8 = 104 bits. The table below shows how the coding works.

Character ASCII Code 8-bit binary value

Space 32 00100000
e 101 01100101
g 103 01100111
h 104 01101000
N 111 01101111
p 112 01110000
r 114 01110010
s 115 01110011




The given string would be written as the following stream of bits (the spaces would
not be written, just the 0’s and 1’s)

01100111 01101111 00100000 01100111 01101111 00100000
01100111 01101111 01110000 01101000 01100101 01110010
01110011

2 From ASCII Coding Towards Huffman Coding

Next, let us see how we might use fewer bits using a simpler coding scheme. Since
there are only 8 different characters in ”go go gophers”, it is possible to use only
3-bits to encode the 8 different characters. We might, for example, use the coding
shown in the table below (keep in mind that other 3-bit encodings are also possible).

Character Code Value 3-bit binary value

g 0 000
0 1 001
p 2 010
h 3 011
e 4 100
r 5 101
S 6 110
Space 7 111

Now the string ”’go go gophers” would be encoded as: 000 001 111 000 001
111 000 001 010 011 100 101 110. Asyoucan see, by using three bits
per character instead of eight bits per character that ASCII uses, the string ”go go
gophers” uses a total of 39 bits instead of 104 bits.

However, even in this improved coding scheme, we used the same number of bits
to represent each character, irrespective of how often the character appears in our
string. Even more bits can be saved if we use fewer than three bits to encode
characters like g, o, and space that occur frequently and more than three bits to
encode characters like e, h, p, r, and s that occur less frequently in ’go go gophers”.
This is the basic idea behind Huffman coding: to use fewer bits for characters that
occur more frequently. We will see how this is done using a tree data structure that
stores the characters as its leaf nodes, and whose root-to-leaf paths provide the bit
sequence used to encode the characters.



2.1 Towards a Coding Tree

Using a binary tree for coding, all characters are stored at the leaves of a tree. A
left-edge is numbered O and a right-edge is numbered 1. The code for any charac-
ter/leaf node is obtained by following the root-to-leaf path and concatenating the
0’s and 1’s. The specific structure of the tree determines the coding of any leaf node
using the 0/1 edge convention described. As an example, the tree below yields the
coding table following it.

Character Binary code
> 101
e’ 1100
g’ 00
1101
’ 01
’ 1110
1111
’ 100

>

bl

>

T, O, S0 @

bl

>

©vn =

Using this coding, ”go go gophers” is encoded (again, spaces would not appear
in the bit-stream) as: 00 01 101 00 01 101 00 01 1110 1101 1100
1111 100. Thisis a total of 37 bits, two bits fewer than the improved encoding in
which each of the 8 characters has a 3-bit encoding! The bits are saved by coding
frequently occurring characters like g’ and ’o’ with fewer bits (here two bits) than
characters that occur less frequently like 'p’, ’h’, ’e’, and ’r’.

To decode a given stream that has been coded by the given tree, start at the root
of the tree, and follow a left-branch if the next bit in the stream is a 0, and a
right branch if the next bit in the stream is a 1. When you reach a leaf, write the
character stored at the leaf, and start again at the top of the tree. The bit stream
10011101101110011111100 yields right-left-left to the letter ’s’, followed
(starting again at the root) with right-right-right-left to the letter 'p’, followed



by right-right-left-right to the letter "h’. Continuing thus yields a decoded string
’sphere.”

2.2 Prefix codes

When all characters are stored in leaves, and every interior (non-leaf) node has
two children, the coding induced by the 0/1 convention outlined above satisfies a
very important property called the prefix property which states that no bit-sequence
encoding of a character is the prefix of the bit-sequence encoding of any other
character. This makes it possible to decode a bitstream using the coding tree by
following root-to-leaf paths. The tree shown above for ”go go gophers” satisfies
this prefix property and is an optimal tree. There are other trees that use 37 bits;
for example you can simply swap any sibling nodes and get a different encoding
that uses the same number of bits. Next, we look at an algorithm for constructing
such an optimal tree. This algorithm is called Huffman coding, and was invented
by David A. Huffman in 1952 when he was a Ph.D. student at MIT.

3 Huffman Coding

In the previous section we saw examples of how a stream of bits can be generated
from an encoding. We also saw how the tree can be used to decode a stream of
bits. We will discuss how to construct the tree here using Huffman’s algorithm.

We will assume that associated with each character is a weight that is equal to the
number of times the character occurs in a file. For example, in the string ’go go
gophers”, the characters *g’ and o’ have weight 3, the space has weight 2, and the
other characters have weight 1. When compressing a file, we will need to first read
the file and calculate these weights. Assume that all the character weights have
been calculated. Huffman’s algorithm assumes that we are building a single tree
from a group (or forest) of trees. Initially, all the trees have a single node containing
a character and the character’s weight. Iteratively, a new tree is formed by picking
two trees and making a new tree whose child nodes are the roots of the two trees.
The weight of the new tree is the sum of the weights of the two sub-trees. This
decreases the number of trees by one in each iteration. The process iterates until
there is only one tree left. The algorithm is as follows:

1. Begin with a forest of trees. All trees have just one node, with the weight
of the tree equal to the weight of the character in the node. Characters that



occur most frequently have the highest weights. Characters that occur least
frequently have the smallest weights.

2. Repeat this step until there is only one tree:

Choose two trees with the smallest weights; call these trees T1 and T2. Cre-
ate a new tree whose root has a weight equal to the sum of the weights T1 +
T2 and whose left sub-tree is T1 and whose right sub-tree is T2.

3. The single tree left after the previous step is an optimal encoding tree.

We shall use the string ”go go gophers” as an example. Initially we have the forest
shown below. The nodes are shown with a weight that represents the number of
times the node’s character occurs in the given input string/file.
elolclolelololc

We pick two minimal nodes. There are five nodes with the minimal weight of 1. In
this implementation, we maintain a priority queue with items arranged according
to their weights. When two items have the same weight, a leaf node (i.e., a node
associated with an ASCII character) is always ordered first. If both nodes are leaf
nodes, they are ordered according to their ASCII coding. If both nodes are non-leaf
nodes, they are ordered according to the creation times of the nodes. We always
pick the first two items in the priority queue, namely, nodes for characters ‘e’ and
’h’. We create a new tree whose root is weighted by the sum of the weights chosen.
The order of the nodes in the priority queue also determines the left and right child
nodes of the new root. We now have a forest of seven trees as shown here. Although
the newly created node has the same weight as Space, it is ordered after Space in
the priority queue because Space is an ASCII character.

POOORPE

Choosing the first two (minimal) nodes in the priority queue yields another tree
with weight 2 as shown below. There are now six trees in the forest of trees that
will eventually build an encoding tree.

Ty
(2)



Again we must choose the first two (minimal) nodes in the priority queue. The
lowest weight is the ’e’-node/tree with weight equal to 1. There are three trees
with weight 2; the one chosen corresponds to an ASCII character because of the
way we order the nodes in the priority queue. The new tree has a weight of 3,
which will be placed last in the priority queue according to our ordering strategy.

Now there are two trees with weight equal to 2. These are joined into a new tree
whose weight is 4. There are four trees left, one whose weight is 4 and three with

a weight of 3.
()

3 3 3

The first two minimal (weight 3) trees in the priority queue are joined into a tree
whose weight is 6. There are three trees left.

7.

Finally, the last two trees are joined into a final tree whose weight is 13, the sum of
the two weights 6 and 7. This tree is the tree we used to illustrate Huffman coding



above. Note that you can easily come up with an alternative optimal tree by using
a different ordering strategy to order trees of the same weights. In that case, the bit
patterns for each character are different, but the total number of bits used to encode
g0 go gophers” is the same.

We now show another tree to compress the string “streets are stone stars are not”
optimally. To encode “streets are” we would have the following bits:

1110001111011000111101010011110.

Character Binary code
»? 101

‘a’ 010

e’ 110

n’ 1000

o’ 1001

T 011
s’ 111
t 00

It is important to note that you cannot use the tree built for the string ”go go go-
phers” to decode the bitstreams obtained from the encoding of “streets are stone



stars are not” as the encoding is performed using a different tree.

4 Reading Huffman Headers

You must store some initial information in the compressed file that will be used
by the decompression/unhuffing program. Basically, you must store the tree that
is used to compress the original file. This is because the decompression program
needs this exact same tree in order to decode the data. The header information
contains:

e The topology of the Huffman coding tree. To store the tree at the beginning
of the file, we use a post-order traversal, writing each node visited. When
you encounter a leaf node, you write a 1 followed by the ASCII character
of the leaf node. When you encounter a non-leaf node, you write a 0. To
indicate the end of the Huffman coding tree, we write another 0.

o The total number of characters in the input file, followed by a newline char-
acter.

Consider the string ”go go gophers”, the header information is

"1glo0lsl 01elh01lplr0000013\n", where "\n" is the newline charac-
ter. The post-order traversal of the Huffman coding tree gives us "1glo0lsl
01elh01plr0000". Another "0" separates the topology from " 13", which is
the number of characters in the input file.

For the string “’streets are stone stars are not”, the header information is
"1t1lalr001lnlo0l 01els000031\n". The resulting tree looks like this:

The numbers below each leaf node corresponds to the number of instances each
characters appears in the file. For assignment PA10, you do not need to worry



about this.

In these two examples, we use characters O and 1 to distinguish between non-
leaf and leaf nodes (and O to indicate the end of a topology). As there are eight
leaf nodes in each of the two examples, there are eight 1’s, seven 0’s for non-leaf
nodes, and another one O to indicate that we have reached the end of a topology.
This approach used a total of 24 bytes.

To construct a Huffman coding tree from the header information, we make use of
a stack. When a 1 is read, we read the corresponding ASCII character and push a
node containing the character onto the stack. When a 0 is read, if the stack contains
only one element, we have constructed the entire Huffman coding tree. Otherwise,
there must be more than one element in the stack. We create a new node, and pop
the top two elements off the stack. We make the first element off the stack the right
child of the new node, and the second element off the stack the left child of the new
node. After that, we push the newly created node onto the stack.



